Shown on Success Stories Page

NOAA Fisheries’ ESA & MMPA Programs Receives Award

The US Secretary of Commerce recognized NOAA Fisheries’ ESA and MMPA programs with a Gold Medal Award for their contribution to regulatory efficiencies and effectiveness in protecting and sustaining at-risk marine and ocean living resources. The Department of Commerce Gold Medal is the highest honor award of the United States Department of Commerce.  Since 1949, the Gold Medal is presented by the Secretary of Commerce for distinguished performance. Particularly noted, Lynker’s Dean-Lorenz Szumylo spearheaded the implementation of the ESA Section 7 Mapper, an interactive, GIS-driven visualization tool NOAA scientists, federal action agencies, and the general public use to help identify ESA-listed species and critical habitats along the East Coast.  Dean was previously awarded NMFS Team Member of the Year for his efforts regarding this tool.

The innovative Mapper tool provides a dynamic web interface used to locate areas where Section 7 Consultations are recommended due to the presence of ESA-listed fish, marine mammals, or sea turtles at various life stages, exhibiting specific behaviors (such as migrating, foraging, spawning, rearing, or calving). The Mapper currently covers consultation areas along major waterways and marine zones of the Greater Atlantic Region and is expanding to include the South Atlantic and Eastern Gulf of Mexico later this year. The tool allows users to draw a project site on a map, determine which consultation areas overlap, and generate a detailed report of ESA species found there. In addition to greatly expediting the process of determining whether further consultation with NOAA Fisheries is necessary, the tool has reduced the number of unnecessary consultation requests received and has improved the quality, accuracy, and reliability of data needed to support regulatory compliance.

Version 2 is now out and represents a major update to the underlying Section 7 Consultation Area data. In the new version of the mapper, users now have increased control over the map display.  They can toggle individual data layers on and off, rearrange the drawing order of data layers, and use a new tool that easily allows them to “swipe” away the data to view the underlying basemap.

Deepwater Horizon Injury Assessment

From 2010-2015, Lynker senior scientist Dr. Cameron Wobus assisted the State of Louisiana with data analysis and modeling to support the NRDA for the Deepwater Horizon oil spill. His tasks included quantification of miles exposed to shoreline oiling and accelerated coastal erosion rates, the development of a hydrodynamic model of oil fate and transport in Louisiana bays, and the development of techniques to quantify the extent of water column toxicity to early life stage fish in offshore waters.

Louisiana Coastal Protection and Restoration Authority

Since the spring of 2018, Lynker has been supporting the Louisiana Coastal Protection and Restoration Authority (CPRA) with restoration planning for coastal marsh restoration in the Barataria Basin. Tasks include coordination between CPRA and the Louisiana Trustee Implementation Group (established as part of the Deepwater Horizon settlement) and preparing restoration planning documentation to comply with National Environmental Policy Act and Oil Pollution Act regulations. Senior Scientist Dr. Cameron Wobus also supported CPRA in technical analyses to support restoration planning and permitting for the Mid-Barataria Sediment Diversion project, which will reconnect the Mississippi River to the Barataria Basin to provide a sustainable source of sediment to replenish marsh habitats.

Chatfield Watershed Model

The Chatfield Watershed Authority requested a modeling solution that would aid in tracking sources of phosphorus from the watershed and allow for the evaluation of management decisions. Lynker teamed with an experienced engineering firm to complete the project which included a thorough model selection process, data collection of hydrologic and water quality data, data gap analysis, and building and calibrating a HSPF water quality model. The model was built to track total phosphorus loading to Chatfield Reservoir so that best management practices could be implemented to reduce total phosphorus concentrations. Model development included the collection of model input data (precipitation, potential evapotranspiration, wind speed, land use, soils data, etc.), watershed delineation, as well as point source loading data. The hydrologic component of the model was calibrated using USGS streamflow data, while the water quality processes were calibrated using grab sample data provided by the Chatfield Watershed Authority. The model is used to connect with the Chatfield Reservoir model to complete management scenario analyses in the future.

California Climate Change Assessment

Lynker completed a climate-change impact analysis for a confidential client in California. The purpose of the study was to provide climate-impacted hydrology (streamflow, irrigation water demand) for a future planning horizon. Our team provided a low-cost solution by utilizing existing Bureau of Reclamation Coupled Model Intercomparison Project (CMIP5) climate change runs processed through the Variable Infiltration Capacity (VIC) hydrologic model. The future climate-impacted hydrology from 2020-2049 (streamflow, evapotranspiration) was compared to a baseline hydrology from 1970-1999, to determine a monthly set of “change factors” for water supply and water demand (streamflow and irrigation water demand, respectively). The change factors were applied to the historical hydrology datasets to create climate-adjusted timeseries for streamflow and water demand, which were used to evaluate future water supply conditions.

Colorado River Water Availability Study

The Colorado River Water Availability Study (CRWAS) was commissioned by the Colorado Water Conservation Board (CWCB) to study the changes in water supply and demand moving into the future. The first phase of the work was completed in 2012; and a second phase was completed in 2015. An important component of the study was analyzing the impacts of climate change on future streamflow for the Colorado River (CRWAS Phase I) and later the entire state (CRWAS Phase II). CRWAS Phase I utilized statistically downscaled GCM outputs in the Coupled Model Intercomparison Project 3 (CMIP3) archive, which included 112 projections of future model forcings (temperature and precipitation) from different models and initial conditions. The “Delta” approach was used to map changes derived from the GCM outputs onto historical daily weather to develop projected weather forcings. Baseline conditions (historical weather) and projected weather were used to force the Variable Infiltration Capacity (VIC) hydrologic model. Comparison of VIC outputs for these two cases gives changes in runoff that were mapped to historical natural flows through a second application of the Delta approach. The use of the Delta approach reduced model bias (from the GCMs and the VIC model) and allowed the work to be based on long-term historical records with which the project stakeholders are familiar and comfortable.

An innovative approach was used to combine change signals for future weather with variability informed by long term (1,200-year-long) records of flows reconstructed from tree rings. The current Phase II effort has updated the results of Phase I to include GCM outputs from 97 projections in the CMIP5 climate change projection archive (a total of 209 runs), and to develop a new and superior approach to developing a small set of planning scenarios. CRWAS Phase II outputs have been provided in a ⅛-degree grid and at the 10-digit Hydrologic Unit (USGS HU), so as to provide readily-accessible climate change data for localized watersheds.

State of Oklahoma Watershed and Water Permitting Management

Lynker developed and calibrated CRAM models for the Red, Verdigris, Muddy Boggy, Blue, and North Canadian River Basins from 2010 to 2015. Since then we have worked with OWRB and the U.S. Bureau of Reclamation (USBR) to update model operations to conform to USBR management of individual reservoirs within the basins. The modeling work for the river basins includes flow naturalization for the basin, simulation of pipeline transfers, reservoir operations, evaporative losses, and groundwater pumping. Lynker staff also worked on Oklahoma’s Comprehensive Water Plan, which provided a detailed analysis of water supply and demand throughout the state by watershed projected to 2060. Our work on the Comprehensive Plan included a climate change analysis, calculating adjustment factors for flow and consumptive irrigation requirement (or irrigation demand) for 2030 and 2060, which were then used to adjust natural flow and historical evaporation.

City of Boulder Water Supply and Climate Change Planning

Lynker staff have supported the City of Boulder’s water supply planning efforts since the 1990’s with the implementation of CRAM to model their raw water supply system. Since 2003, the City of Boulder has incorporated climate change assessment into its water supply planning model, most recently in a NOAA-sponsored study initiated in 2006 and completed in 2008. Lynker staff completed model runs with climate-adjusted model forcings (climate adjusted natural flow and irrigation demands) to analyze system performance under future hydrologic conditions. In 2016 Lynker extended the CRAM modeling period of record to 2016 to include the 2012 drought conditions and updated the climate change analysis to include the Colorado River Water Availability Study Phase II climate adjustments to hydrology for the Boulder Creek watershed.

City of Aurora Water Supply Planning

Lynker developed and assists in the maintenance of the Aurora, Colorado Raw Water Supply System Model which was built using the CRAM modeling framework hosted in Microsoft Excel. Staff at Lynker have been working with Aurora since 2003 on this model of their multi-basin water supply system. Ongoing tasks have included adding new CIP features, performing analysis of what-if scenarios and sizing of potential future facilities.

Lynker has added new reservoirs, treatment plants, and water-reuse/recovery facilities to the CRAM model, used for the recent Integrated Water Resources Master Plan created by Aurora Water. In addition, Lynker provides training and customization as requested for the modeling platform.

Idaho Ground Water Appropriators Conjunctive Use and Water Rights

Lynker, under contract with the Idaho Ground Water Appropriators, provides oversight of regional groundwater model development of the Eastern Snake Plain Aquifer. In addition, Lynker provides litigation support through technical memos and expert reports of groundwater modeling of aquifer management and mitigation plans, consumptive use analysis, analysis of historical water use data, and other water rights applications.